Chapter 2 Practice Problems p39; 9,11,13

For problems 9-11, refer to Figure 2-13.
9. Describe the motion of the car shown by the graph.
11. Answer the following questions about the car's motion. Assume that the positive d-direction is east and the negative d-direction is west.
a.When was the car 25.0 m east of the origin?
b. Where was the car at 1.0 s ?
13. Odina walked down the hall at school from the cafeteria to the band room, a distance of 100.0 m . A class of physics students recorded and graphed her position every 2.0 s , noting that she moved 2.6 m every 2.0 s .
When was Odina in the following positions?
a. 25.0 m from the cafeteria
b. 25.0 m from the band room
c.Create a graph showing Odina's motion.

Practice Problems p41; 14, 15, 16, 18

For problems 14-17, refer to the figure in Example Problem 2.
14. What event occurred at $\mathrm{t}=0 \mathrm{~s}$?
15. Which runner was ahead at $\mathrm{t}=480 \mathrm{~s}$?
16. When runner A was at 0.0 m , where was runner B ?
17. How far apart were runners A and B at $t=20$ s?
18.Juanita goes for a walk. Sometime later, her friend Heather starts to walk after her. Their motions are represented by the position-time graphs in Figure 2-16.
a. How long had Juanita been walking when Heather started her walk?
b. Will Heather catch up to Juanita? How can you tell?

Assessment p 53; 49,51, 54, 62

49. A bike travels at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$ for 5.0 s . How far does it go?
50. Light from the Sun reaches Earth in 8.3 min . The speed of light is $3.008 \mathrm{~m} / \mathrm{s}$. How far is Earth from the Sun?
51. A car is moving down a street at $55 \mathrm{~km} / \mathrm{h}$. A child suddenly runs into the street. If it takes the driver 0.75 s to react and apply the brakes, how many meters will the car have moved before it begins to slow down?
52. A cyclist maintains a constant velocity of $+5.0 \mathrm{~m} / \mathrm{s}$. At time $\mathrm{t}=0.0 \mathrm{~s}$, the cyclist is +250 m from point A .
a. Plot a position-time graph of the cyclist's location from point A at 10.0-s intervals for 60.0 s .
b. What is the cyclist's position from point A at 60.0 s ?
c.What is the displacement from the starting position at 60.0 s ?
53. You plan a car trip for which you want to average $90 \mathrm{~km} / \mathrm{h}$. You cover the first half of the distance at an average speed of only $48 \mathrm{~km} / \mathrm{h}$. What must your average speed be in the second half of the trip to meet your goal? Is this reasonable?

Note that the velocities are based on half the distance, not half the time.

Chapter 3 Practice Problems p61; 3, 4

3. Refer to the v-tgraph of the toy train in Figure 3-6 to answer the following questions.
a. When is the train's speed constant?
b.During which time interval is the train's acceleration positive?
c.When is the train's acceleration most negative?
4. Refer to Figure 3-6 to find the average acceleration of the train during the following time intervals.
a. 0.0 s to 5.0 s
b. 15.0 s to 20.0 s
c. 0.0 s to 40.0 s

Practice Problems p64; 6, 7, 9,

6. A race car's velocity increases from $4.0 \mathrm{~m} / \mathrm{s}$ to $36 \mathrm{~m} / \mathrm{s}$ over a $4.0-\mathrm{s}$ time interval. What is its average acceleration?
7. The race car in the previous problem slows from $36 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$ over 3.0 s . What is its average acceleration?
8. A bus is moving at $25 \mathrm{~m} / \mathrm{s}$ when the driver steps on the brakes and brings the bus to a stop in 3.0 s .
a. What is the average acceleration of the bus while braking?
b. If the bus took twice as long to stop, how would the acceleration compare with what you found in part a?

p65; 18ab, 19, 20, 21

18. A golf ball rolls up a hill toward a miniature-golf hole. Assume that the direction toward the hole is positive.
a.If the golf ball starts with a speed of $2.0 \mathrm{~m} / \mathrm{s}$ and slows at a constant rate of $0.50 \mathrm{~m} / \mathrm{s}^{2}$, what is its velocity after 2.0 s ?
b. What is the golf ball's velocity if the constant acceleration continues for 6.0 s?
19. A bus that is traveling at $30.0 \mathrm{~km} / \mathrm{h}$ speeds up at a constant rate of $3.5 \mathrm{~m} / \mathrm{s}^{2}$. What velocity does it reach 6.8 s later?
20. If a car accelerates from rest at a constant $5.5 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take for the car to reach a velocity of $28 \mathrm{~m} / \mathrm{s}$?
21. A car slows from $22 \mathrm{~m} / \mathrm{s}$ to $3.0 \mathrm{~m} / \mathrm{s}$ at a constant rate of $2.1 \mathrm{~m} / \mathrm{s}^{2}$. How many seconds are required before the car is traveling at $3.0 \mathrm{~m} / \mathrm{s}$?

Practice Problems p69; 26, 27, 28, 29

26. A skateboarder is moving at a constant velocity of $1.75 \mathrm{~m} / \mathrm{s}$ when she starts up an incline that causes her to slow down with a constant acceleration of $-0.20 \mathrm{~m} / \mathrm{s}^{2}$. How much time passes from when she begins to slow down until she begins to move back down the incline?
27. A race car travels on a racetrack at $44 \mathrm{~m} / \mathrm{s}$ and slows at a constant rate to a velocity of $22 \mathrm{~m} / \mathrm{s}$ over 11 s . How far does it move during this time?
28. A car accelerates at a constant rate from $15 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$ while it travels a distance of 125 m . How long does it take to achieve this speed?
29. A bike rider pedals with constant acceleration to reach a velocity of $7.5 \mathrm{~m} / \mathrm{s}$ over a time of 4.5 s . During the period of acceleration, the bike's displacement is 19 m . What was the initial velocity of the bike?

Practice Problems p74; 42, 43, 44, 45, 46

42. A construction worker accidentally drops a brick from a high scaffold.
a.What is the velocity of the brick after 4.0 s ?
b. How far does the brick fall during this time?
43. Suppose for the previous problem you choose your coordinate system so that the opposite direction is positive.
a.What is the brick's velocity after 4.0 s?
b. How far does the brick fall during this time?
44. A student drops a ball from a window 3.5 m above the sidewalk. How fast is it moving when it hits the sidewalk?
45. A tennis ball is thrown straight up with an initial speed of $22.5 \mathrm{~m} / \mathrm{s}$. It is caught at the same distance above the ground.
a.How high does the ball rise?
b. How long does the ball remain in the air?

Hint: The time it takes the ball to rise equals the time it takes to fall.
46. You decide to flip a coin to determine whether to do your physics or English homework first. The coin is flipped straight up.
a.If the coin reaches a high point of 0.25 m above where you released it , what was its initial speed?
b. If you catch it at the same height as you released it, how much time did it spend in the air?

Chapter Assessment p81; 80,81, 82, 85, 88, 90, 93, 96, 97, 99, 100,101
80. Find the uniform acceleration that causes a car's
velocity to change from $32 \mathrm{~m} / \mathrm{s}$ to $96 \mathrm{~m} / \mathrm{s}$ in an 8.0 s period.
81. A car with a velocity of $22 \mathrm{~m} / \mathrm{s}$ is accelerated uniformly at the rate of $1.6 \mathrm{~m} / \mathrm{s}^{2}$ for 6.8 s . What is its final velocity?

82. Refer to Figure 3-19 to find the acceleration of the moving object at each of the following times.
a.during the first 5.0 s of travel
b.between 5.0 s and 10.0 s
c.between 10.0 s and 15.0 s
d.between 20.0 s and 25.0 s
85. Marco is looking for a used sports car. He wants to buy the one with the greatest acceleration.

Car A can go from $0 \mathrm{~m} / \mathrm{s}$ to $17.9 \mathrm{~m} / \mathrm{s}$ in 4.0 s ;
car B can accelerate from $0 \mathrm{~m} / \mathrm{s}$ to $22.4 \mathrm{~m} / \mathrm{s}$ in 3.5 s ;
and car C can go from 0 to $26.8 \mathrm{~m} / \mathrm{s}$ in 6.0 s .
Rank the three cars from greatest acceleration to least, specifically indicating any ties.
88. A dragster starting from rest accelerates at $49 \mathrm{~m} / \mathrm{s}^{2}$. How fast is it going when it has traveled 325 m ?
90. A race car can be slowed with a constant acceleration of $-11 \mathrm{~m} / \mathrm{s}^{2}$.
a.If the car is going $55 \mathrm{~m} / \mathrm{s}$, how many meters will it travel before it stops?
b. How many meters will it take to stop a car going twice as fast?
93. How far does a plane fly in 15 s while its velocity is changing from $145 \mathrm{~m} / \mathrm{s}$ to 75 m / s at a uniform rate of acceleration?
96. A student drops a penny from the top of a tower and decides that she will establish a coordinate system in which the direction of the penny's motion is positive. What is the sign of the acceleration of the penny?
97. Suppose an astronaut drops a feather from 1.2 m above the surface of the Moon. If the acceleration due to gravity on the Moon is $1.62 \mathrm{~m} / \mathrm{s}^{2}$ downward, how long does it take the feather to hit the Moon's surface?
98.A stone that starts at rest is in free fall for 8.0 s .
a.Calculate the stone's velocity after 8.0 s .
b.What is the stone's displacement during this time?
99. A bag is dropped from a hovering helicopter. The bag has fallen for 2.0 s .
a. What is the bag's velocity?
b. How far has the bag fallen?
100. You throw a ball downward from a window at a speed of $2.0 \mathrm{~m} / \mathrm{s}$. How fast will it be moving when it hits the sidewalk 2.5 m below?
101. If you throw the ball in the previous problem up instead of down, how fast will it be moving when it hits the sidewalk?

