

Math with Scientific Notation

Prefixes You Must Know

Power of 10	Exponent	Prefix	Symbol	Common Name
9	10 9	giga	G	billion
6	10 6	mega	М	million
3	10 ³	kilo	k	thousand
2	10 ²	hecto	h	hundred
1	10 1	deca	da	ten
-1	10 -1	deci	d	tenth
-2	10 -2	centi	С	hundredth
-3	10 -3	milli	m	thousandth
-6	10 -6	micro	μ	millionth
-9	10 -9	nano	n	billionth

Time to Forget Henry

King Henry Did Usually
 Drink Chocolate Milk.. but
 that's for kids.

Scientific Notation

A number in scientific notation looks like...

$4.25 \times 10^3 \text{ m}$

- Number
 - Must start with an integer from 1 to 9
 - 0.21 x 10² isn't quite right
- Power of 10
- Units
 - one of the most important parts

Easier to Read

300,000,000 m/s

- the speed of light is 300,000,000 meters each second
- Find the decimal
- Move the decimal count how far it goes
- Use that for the exponent

Which is Easier to Read?

300,000,000 m/s or..

 $3 \times 10^8 \, \text{m/s}$

Easier to Read

0.000065 m

- Really small numbers work too
- Find the decimal
- Move the decimal count how far it goes
- This time, the exponent is negative

Which is Appropriate?

0.0000065 m or..

 $6.5 \times 10^{-6} \, \text{m}$ or..

6.5 µm

Not as Far To Go

 $8500 \times 10^6 g$

- This number isn't quite in scientific notation
- Find the decimal
- Move the decimal & count how far it goes
- Change the exponent by that much

8500 x10⁶ g

- You moved the decimal 3 times
- The number "looks" smaller
- The exponent must become bigger by 3

 $8.5 \times 10^9 g$

8.5 Gg 8.5 x10⁶ kg

Change these into scientific notation

38,600 m

157,300 s

147 cm

93,000,000 miles

Change these into scientific notation

0.715 kg

0.00083 g

0.000025 s

0.00083 m

Change these OUT OF scientific notation

 $9.3 \times 10^6 \text{ kg}$

 $3.75 \times 10^2 \text{ m}$

 $8 \times 10^4 \text{ N}$

 $2.39 \times 10^{18} \text{ s}$

Change these OUT OF scientific notation

4.8 x10 -5 kg

7.21 x10 ⁻³ m

3 x 10 -2 N

 $5.9 \times 10^{-9} \text{ s}$

Change these into the required power of ten (does not require scientific notation)

```
(10^3) 38,600 m
```

- (10^3) 1,450 g
- (10⁶) 540,000 Watts
- (10^{-3}) 0.0253 s

Changing the Prefix

Conversions powers of 10

- How many centimeters are in 6.8 meters?
- $1 \text{ m} = 1 \times 10^2 \text{ cm}$
 - (or $1 \text{ cm} = 1 \times 10^{-2} \text{ m}$)
- $6.8 \text{ m} = 6.8 \times 10^2 \text{ cm}$
 - and you can say 680 if you'd prefer

Two steps

- How many cm are in 5 km?
- Work with each prefix
 - $1 \text{ km} = 1 \times 10^3 \text{ m}$
 - $1 \text{ cm} = 1 \times 10^{-2} \text{ m}$
 - the two are 5 places apart

Watch Directions!

- Decision: How many cm are in 5 km?
- is it 5×10^5 or 5×10^{-5}
- a lot or only a part of one?
- 500,000 or 0.00005
- 5 x 10⁵ cm in 5 km

Multiplication

- What is 640,000 times 20,000?
- \bullet (6.4 x 10⁵) x (2 x 10⁴)
 - multiply the values $(6.4 \times 2 = 12.8)$
 - Add the exponents 5 + 4 = 9
- state your answer 12.8 x 10⁹

Division

- \bullet (6.4 x 10⁵) / (2 x 10⁴)
- divide the values (6.4 / 2 = 3.2)
- subtract the exponents 5 4 = 1
- state your answer 3.2 x 10¹
 - Unless you MUST use scientific notation, simplify your answer to 32

Practice

$$(7.2 \times 10^4) \times (3 \times 10^3)$$

$$(4.2 \times 10^5) \times (6 \times 10^{-2})$$

$$(6.3 \times 10^4) / (3 \times 10^3)$$

$$(4.8 \times 10^5) / (6 \times 10^{-2})$$

What is... l dollar plus l dime?

- Is it 2 of anything?
- 1.10 dollars
- 11 dimes
- How do you get these answers?

Addition

- \bullet (6.4 x 10⁵) + (2 x 10⁴)
- Pick one to change
- \bullet (64 x 10⁴) + (2 x 10⁴)
- 66 x 10⁴
 - or 6.6 x 10⁵

Practice

$$(3.5 \times 10^4) - (2.8 \times 10^3)$$

$$(5 \times 10^6) + (0.51 \times 10^8)$$

$$(6.0 \times 10^{-3}) + (5.0 \times 10^{-4})$$

$$(5.0 \times 10^9) + (3.0 \times 10^{-1})$$

Does that last one seem strange to solve?