

Math with Scientific Notation

Prefixes You Must Know

Power of 10	Exponent	Prefix	Symbol	Common Name
9	10^{9}	giga	G	billion
6	10^{6}	mega	M	million
3	10^{3}	kilo	k	thousand
2	10^{2}	hecto	h	hundred
1	10^{1}	deca	da	ten
-1	10^{-1}	deci	d	tenth
-2	10^{-2}	centi	c	hundredth
-3	10^{-3}	milli	m	thousandth
-6	10^{-6}	micro	H	millionth
-9	10^{-9}	nano	n	billionth

Time to

 Forget Henry

 Forget Henry}

- King Henry Did Usually Drink Chocolate Milk.. but that's for kids.

KING HENRY'S

chocolate 1\% © Eelat

Scientific Notation

- A number in scientific notation looks like...

$4.25 \times 10^{3} \mathrm{~m}$

- Number
- Must start with an integer from 1 to 9
- 0.21×10^{2} isn't quite right
- Power of 10
- Units
- one of the most important parts

Easier to Read

$300,000,000 \mathrm{~m} / \mathrm{s}$

- the speed of light is $300,000,000$ meters each second
- Find the decimal
- Move the decimal - count how far it goes
- Use that for the exponent

Which is Easier to Read?

$300,000,000 \mathrm{~m} / \mathrm{s}$ or..

$$
3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Easier to Read

0.0000065 m

- Really small numbers work too
- Find the decimal
- Move the decimal - count how far it goes
- This time, the exponent is negative

Which is Appropriate?

0.0000065 m or..

$6.5 \times 10^{-6} \mathrm{~m}$ or..

$6.5 \mu \mathrm{~m}$

Not as Far To Go

$8500 \times 10^{6} \mathrm{~g}$

- This number isn't quite in scientific notation
- Find the decimal
- Move the decimal \& count how far it goes
- Change the exponent by that much

$8500 \times 10^{6} \mathrm{~g}$

- You moved the decimal 3 times
- The number "looks" smaller
- The exponent must become bigger by 3

$$
8.5 \times 10^{9} \mathrm{~g}
$$

Practice

Change these into scientific notation

38,600 m
157,300 s
147 cm
93,000,000 miles

Change these into scientific notation

0.715 kg
0.00083 g
0.000025 s
0.00083 m

Change these OUT OF scientific notation

$9.3 \times 10^{6} \mathrm{~kg}$
$3.75 \times 10^{2} \mathrm{~m}$
$8 \times 10^{4} \mathrm{~N}$
$2.39 \times 10^{18} \mathrm{~S}$

Change these OUT OF scientific notation

$4.8 \times 10^{-5} \mathrm{~kg}$
$7.21 \times 10^{-3} \mathrm{~m}$
$3 \times 10^{-2} \mathrm{~N}$
$5.9 \times 10^{-9} \mathrm{~s}$

Change these into the required power of ten

 (does not require scientific notation)(103) $38,600 \mathrm{~m}$
(103) $1,450 \mathrm{~g}$
(10 $\left.{ }^{6}\right)$ 540,000 Watts
$\left(10^{-3}\right) \quad 0.0253 \mathrm{~s}$

Changing the Prefix

Conversions powers of 10

- How many centimeters are in 6.8 meters?
- $1 \mathrm{~m}=1 \times 10^{2} \mathrm{~cm}$
- (or $1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m}$)
- $6.8 \mathrm{~m}=6.8 \times 10^{2} \mathrm{~cm}$
- and you can say 680 if you'd prefer

Two steps

- How many cm are in 5 km?
- Work with each prefix
- $1 \mathrm{~km}=1 \times 10^{3} \mathrm{~m}$
- $1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m}$
- the two are 5 places apart

Watch Directions!

- Decision: How many cm are in 5 km ?
- is it 5×10^{5} or 5×10^{-5}
- a lot or only a part of one?
- 500,000 or 0.00005
- $5 \times 10^{5} \mathrm{~cm}$ in 5 km

Math with Exponents

Multiplication

- What is 640,000 times 20,000 ?
- $\left(6.4 \times 10^{5}\right) \times\left(2 \times 10^{4}\right)$
- multiply the values $(6.4 \times 2=12.8)$
- Add the exponents $5+4=9$
- state your answer 12.8×10^{9}

Division

- $\left(6.4 \times 10^{5}\right) /\left(2 \times 10^{4}\right)$
- divide the values ($6.4 / 2=3.2$)
- subtract the exponents 5-4=1
- state your answer 3.2×10^{1}
- Unless you MUST use scientific notation, simplify your answer to 32

Practice

$\left(7.2 \times 10^{4}\right) \times\left(3 \times 10^{3}\right)$
$\left(4.2 \times 10^{5}\right) \times\left(6 \times 10^{-2}\right)$
$\left(6.3 \times 10^{4}\right) /\left(3 \times 10^{3}\right)$
$\left(4.8 \times 10^{5}\right) /\left(6 \times 10^{-2}\right)$

What is...

 l dollar plus l dime?

 l dollar plus l dime?}

- Is it 2 of anything?
- 1.10 dollars
- 11 dimes
- How do you get these answers?

Addition

- $\left(6.4 \times 10^{5}\right)+\left(2 \times 10^{4}\right)$
- Pick one to change
- $\left(64 \times 10^{4}\right)+\left(2 \times 10^{4}\right)$
- 66×10^{4}
- or 6.6×10^{5}

Practice

$\left(3.5 \times 10^{4}\right)-\left(2.8 \times 10^{3}\right)$
$\left(5 \times 10^{6}\right)+\left(0.51 \times 10^{8}\right)$
$\left(6.0 \times 10^{-3}\right)+\left(5.0 \times 10^{-4}\right)$
$\left(5.0 \times 10^{9}\right)+\left(3.0 \times 10^{-1}\right)$

Does that last one seem strange to solve?

