PROJECTILE MOTION

Linear Motion

* A baseball is dropped from the top of a bridge 200m above the water.
* When does it hit the base? (water)
* What is its final velocity?

Given Variables

* A baseball is dropped from the top of a bridge 200m above the water.
* When does it hit the ground?
* What is its final velocity?

$$
\begin{aligned}
& Y_{i}=200 \mathrm{~m} \\
& Y_{\mathrm{f}}=0 \mathrm{~m} \\
& \mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& v_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Solve for Time

$y_{f}=y_{i}+v_{y} t+1 / 2 a t^{2}$
$0=200+0+1 / 2(-9.8) t^{2}$
$t= \pm 6.39 \mathrm{~s}$

Solve for Velocity

$$
v_{f}^{2}=v_{i}^{2}+2 a d
$$

$$
V_{f}^{2}=0+2(-9.8)(-200)
$$

$$
V_{f}= \pm 62.61 \mathrm{~m} / \mathrm{s}
$$

\pm choose the one that makes sense

A little more complicated

* A penny is thrown, straight up in the air, with an upward velocity of $15 \mathrm{~m} / \mathrm{s}$ from the top of a 90 m building.
* How high does it go?
* When does it land?
* What is its final velocity?

Solve: Height at the Top

$$
\text { * } v_{f}^{2}=v_{i}^{2}+2 a d
$$

$$
\text { * } 0=15^{2}+2(-9.8) d
$$

$$
\text { * } d=11.5 m
$$

$$
\text { * } Y_{\max }=h=101.5 m
$$

Solve: Time at the Top

$$
\begin{aligned}
& * V_{f}=v_{i}+a t \\
& * 0=15+(-9.8) t \\
& * t=1.53 \mathrm{~s}
\end{aligned}
$$

Solve: Velocity at the Bottom

$$
* v_{f}^{2}=v_{i}^{2}+2 a d
$$

$$
* V_{\mathrm{f}}{ }^{2}=0+2(-9.8)(-101.5)
$$

$$
* V_{f}= \pm 43.91 \mathrm{~m} / \mathrm{s}
$$

* \pm means you have to decide "up" or "down"

Solve: Time at the Bottom

$$
\text { * } y_{f}=y_{i}+v_{y} t+1 / 2 a t^{2}
$$

* $0=101.5+1 / 2(-9.8) t^{2}$
* $t=4.55 \mathrm{~s}$
*Total Time $=6.08 \mathrm{~s}$

Definitions:

*Simple Projectile Motion:
*The motion of a body thrown or fired with an initial velocity v_{o} in a gravitational field.
*Projectile:
*A kinematic object whose motion is influenced by only the force of gravity.
*Trajectory:
*The path through space followed by a projectile.

The Cliff

* Problems of this style have an Initial Velocity that is Horizontal
* "x" Velocity is constant
* Common Questions;
* Find Time
* Find Range
* Find Final "y" Velocity
* Find Final Velocity

A Ball Rolls From a Cliff

* $\mathrm{v}_{\mathrm{i}}=24 \mathrm{~m} / \mathrm{s}$
* $y_{i}=48 \mathrm{~m}$
* Common Questions;
* Where and when does it land?
* Final velocity?

Ignore the "complicated" parabola

Find the time to land

$$
\begin{aligned}
& * y_{f}=y_{i}+v_{y} t+1 / 2 a t^{2} \\
& * 0=48+0+1 / 2(-9.8) t^{2} \\
& * 48 \div 4.9=t^{2} \\
& * t=3.13 s
\end{aligned}
$$

Find V_{fy}

$$
\begin{aligned}
& * v_{f^{2}}=v_{i}^{2}+2 \text { a d } \\
& * v_{f y^{2}}=0+2(-9.8)(-48) \\
& * v_{f y}=940.8 \\
& * v_{t y}= \pm 30.67 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Find the speed for V_{f}

* $V_{t}{ }^{2}=24^{2}+30.67^{2}$
* $\mathrm{V}_{\mathrm{f}}=38.94 \mathrm{~m} / \mathrm{s}$

Find the Direction for V_{f}

* $\tan ^{-1}(-30.67 / 24)$
* Most calculators will show -51.9º
* Properly state 308°

Find the Range

* The distance in the x when it lands
* $X_{f}=x_{i}+v_{x} t+1 / 2 a t^{2}$
* $t=3.13 s$
ε
$\stackrel{\infty}{\star}$
* $X_{f}=0+(24)(3.13)+0$
* $X_{f}=75.12 \mathrm{~m}$

Location every 2 seconds

time	x velocity	y velocity	x position	y posititon
0	12	0	0	400
2	12	-19.6	24	380.4
4	12	-39.2	48	321.6
6	12	-58.8	72	223.6
8	12	-78.4	96	86.4
10	12	-98	120	-90

SOCCER BALL

* Initial angle θ for velocity
* Final and Initial Heights are equal
θ

VECTORS

* As a vector at the start of a problem
* X velocity will not change
* Y velocity is changed by gravity
* As a vector at the end of a problem

The Soccer Ball Position, Time, Velocity

* Common Questions;
* Maximum Height
* Where and when does it land?
* Final velocity?

Initial Velocities

$$
\begin{aligned}
& * v_{i}=20 \mathrm{~m} / \mathrm{s} \text { at } 32^{\circ} \\
& * v_{i x}=20 \cos 32^{\circ} \\
& * v_{i y}=20 \sin 32^{\circ} \\
& * a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& * a_{x}=0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Maximum Height

$$
\begin{aligned}
& * v_{f^{2}}=v_{i}^{2}+2 a d \\
& * 0^{2}=10.6^{2}+2(-9.8)(y) \\
& * y=5.73 m
\end{aligned}
$$

$16.96 \mathrm{~m} / \mathrm{s}$

Time at the Top

$$
\begin{aligned}
& * v_{f}=v_{i}+a t \\
& * 0=10.6+(-9.8) t \\
& * t=1.08 s
\end{aligned}
$$

$16.96 \mathrm{~m} / \mathrm{s}$

Time to the ground

$$
* t_{\text {top }}=1.08 \mathrm{~s}
$$

* same distance, and acceleration?
* $T=2 t=2.163 \mathrm{~s}$

$16.96 \mathrm{~m} / \mathrm{s}$

Range - the final x position

$$
\begin{aligned}
& * T=2.163 s \\
& * x=x+v T+1 / 2 a T^{2} \\
& * x=0+(16.96)(2.16)+0 \\
& * x_{f}=36.7 \mathrm{~m}
\end{aligned}
$$

Final Velocity Using some symmetry

* $v_{i}=20 \mathrm{~m} / \mathrm{s}$ at 32°
* $V_{f}=20 \mathrm{~m} / \mathrm{s}$ at -32°
* $V_{f}=20 \mathrm{~m} / \mathrm{s}$ at 328°

Soccer Style

* Front Half is like a soccer problem to the top.
* Find the height and time to the top first

Cliff Style

* Back half is like a cliff
* Find the velocity downward and time to the bottom.

Given Information

$$
\begin{aligned}
& * v_{i}=40 \mathrm{~m} / \mathrm{s} \text { at } 75^{\circ} \\
& * y_{i}=35 \mathrm{~m} \\
& * v_{i x}=40 \cos 75^{\circ} \\
& * v_{i x}=10.35 \mathrm{~m} / \mathrm{s} \\
& * v_{i y}=40 \sin 75^{\circ} \\
& * v_{i y}=38.63 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

At the Top of the Trajectory

* $\mathrm{vf}^{2}=\mathrm{vi}^{2}+2 a d$
* $0^{2}=38.63^{2}+2(-9.8)(d)$
* $d=76.14 m$
* $y_{\max }=h=111.14 \mathrm{~m}$

Time to the Top

$$
\begin{aligned}
& * v_{f}=v_{i}+a t \\
& * 0=38.63+(-9.8) t \\
& * t=3.94 s
\end{aligned}
$$

Time to Reach the Ground

Downward Velocity at the Ground

Range

Final Velocity

$10.35 \mathrm{~m} / \mathrm{s}$

* $V_{f}=47.78 \mathrm{~m} / \mathrm{s}$ at 282.5°
* (do the math!)

Projectile Lab Experiment Vertical Launch

Setting	Average Maximum Height
1 click	
2 clicks	
3 clicks	

Projectile Lab Experiment Second Launch

Calculated Velocity	Assigned Angle	Predicted Range	Predicted Time

Projectile Lab Experiment Third Launch

