PROJECTILE MOTION

Linear Motion

* A baseball is dropped from the top of a bridge 200m above the water.

* When does it hit the base?(water)

* What is its final velocity?

Given Variables

- * A baseball is dropped from the top of a bridge 200m above the water.
- * When does it hit the ground?
- * What is its final velocity?

$$Y_i = 200 \text{ m}$$
 $Y_f = 0 \text{ m}$
 $a = -9.8 \text{ m/s}^2$
 $v_i = 0 \text{ m/s}$

Solve for Time

$$y_f = y_i + v_y t + \frac{1}{2} a t^2$$

 $0 = 200 + 0 + \frac{1}{2}(-9.8) t^2$
 $t = \pm 6.39s$

Solve for Velocity

$$V_f^2 = V_i^2 + 2 a d$$

$$V_f^2 = 0 + 2(-9.8)(-200)$$

$$V_f = \pm 62.61 \text{ m/s}$$

± choose the one that makes sense

A little more complicated

- * A penny is thrown, straight up in the air, with an upward velocity of 15 m/s from the top of a 90 m building.
- * How high does it go?
- * When does it land?
- * What is its final velocity?

Solve: Height at the Top

$$* V_f^2 = V_i^2 + 2 a d$$

$$* 0 = 15^2 + 2(-9.8)d$$

- * d = 11.5m
- $* Y_{max} = h = 101.5m$

Solve: Time at the Top

$$*V_f = V_i + at$$

$$*0 = 15 + (-9.8)t$$

$$* t = 1.53 s$$

Solve: Velocity at the Bottom

$$*V_f^2 = V_i^2 + 2 a d$$

$$*V_f^2 = 0 + 2(-9.8)(-101.5)$$

$$*V_f = \pm 43.91 \text{ m/s}$$

* ± means you have to decide "up" or "down"

Solve: Time at the Bottom

*
$$y_f = y_i + v_y t + \frac{1}{2} a t^2$$

*
$$0 = 101.5 + \frac{1}{2}(-9.8)t^2$$

$$*$$
 $t = 4.55s$

*Total Time = 6.08s

Definitions:

*Simple Projectile Motion:

*The motion of a body thrown or fired with an initial velocity v_o in a gravitational field.

*Projectile:

*A kinematic object whose motion is influenced by only the force of gravity.

*Trajectory:

*The path through space followed by a projectile.

The Cliff

- * Problems of this style have an Initial Velocity that is Horizontal
- * "x" Velocity is constant
- * Common Questions;
 - * Find Time
 - * Find Range
 - * Find Final "y" Velocity
 - * Find Final Velocity

A Ball Rolls From a Cliff

Ignore the "complicated" parabola

Find the time to land

*
$$y_f = y_i + v_y t + \frac{1}{2} a t^2$$

$$*0 = 48 + 0 + \frac{1}{2} (-9.8) t^2$$

$$*48 \div 4.9 = t^2$$

$$* t = 3.13 s$$

Find V_{fy}

*
$$V_f^2 = V_i^2 + 2 a d$$

$$* V_{fy}^2 = 0 + 2 (-9.8) (-48)$$

$$* V_{fy}^2 = 940.8$$

$$* V_{fy} = \pm 30.67 \text{ m/s}$$

48 m

Find the speed for V_f

$$* V_f^2 = 24^2 + 30.67^2$$

$$* V_f = 38.94 \text{ m/s}$$

Find the Direction for V_f

- * tan-1 (-30.67 / 24)
- * Most calculators will show -51.9°
- * Properly state 308°

48 m

Find the Range

* The distance in the x when it lands

$$* X_f = X_i + V_X t + \frac{1}{2} a t^2$$

$$* t = 3.13 s$$

$$* X_f = 0 + (24)(3.13) + 0$$

$$* x_f = 75.12 \text{ m}$$

48 m

Location every 2 seconds

time	x velocity	y velocity	x position	y posititon
0	12	0	0	400
2	12	-19.6	24	380.4
4	12	-39.2	48	321.6
6	12	-58.8	72	223.6
8	12	-78.4	96	86.4
10	12	-98	120	-90

VECTORS

- * As a vector at the start of a problem
- * X velocity will not change
- * Y velocity is changed by gravity
- * As a vector at the end of a problem

The Soccer Ball Position, Time, Velocity

- * Common Questions;
 - * Maximum Height
 - * Where and when does it land?
 - * Final velocity?

Initial Velocities

$$* v_i = 20 \text{ m/s at } 32^\circ$$

$$* V_{ix} = 20 \cos 32^{\circ}$$

$$* V_{iy} = 20 \sin 32^{\circ}$$

$$* a_y = -9.8 \text{ m/s}^2$$

$$* a_x = 0 \text{ m/s}^2$$

Maximum Height

$$* V_f^2 = V_i^2 + 2 a d$$

$$* 0^2 = 10.6^2 + 2(-9.8)(y)$$

$$*y = 5.73m$$

Time at the Top

$$* V_f = V_i + at$$

$$*0 = 10.6 + (-9.8)t$$

$$*$$
 t= 1.08 s

Time to the ground

- * $t_{top} = 1.08 s$
- * same distance, and acceleration?
- *T = 2t = 2.163 s

Range - the final x position

$$*T = 2.163 s$$

$$* X = X + VT + \frac{1}{2} aT^2$$

$$* x = 0 + (16.96)(2.16) + 0$$

$$* x_f = 36.7 \text{ m}$$

Final Velocity Using some symmetry

- $* V_i = 20 \text{ m/s at } 32^\circ$
- $* V_f = 20 \text{ m/s at -}32^\circ$
- $* V_f = 20 \text{ m/s at } 328^\circ$

Cliff Style

Given Information

At the Top of the Trajectory

Time to the Top

Time to Reach the Ground

Downward Velocity at the Ground

Range

- * $V_f = 47.78 \text{ m/s at } 282.5^{\circ}$
- * (do the math!)

Projectile Lab Experiment Vertical Launch

Setting	Average Maximum Height
1 click	
2 clicks	
3 clicks	

Projectile Lab Experiment Second Launch

Calculated Velocity	Assigned Angle	Predicted Range	Predicted Time

Projectile Lab Experiment Third Launch

