KINEMATICS

WHERE ARE YOU?

- Typical Cartesian Coordinate System
- usually only the X and Y axis
- meters

- Distance
- Scalar Quantity
- Difference between two positions

Displacement

- Vector Quantity
- How to get from one position to another

WHEN YOU MOVE

HOW FAST?

- Speed

- Scalar Quantity
- Change in DISTANCE over TIME
- Velocity
- Vector Quantity
- Change in DISPLACEMENT over TIME
- units for both (m / s)

VELOCITY OR SPEED

- A person jogs eight complete laps around a quarter mile track in a total time of 12.5 minutes.
- Calculate
- (a) the average speed and
- (b) the average velocity, in miles per hour (mph)

VELOCITY DETAILS

- Direction can change the results
- Often positive or negative represents the direction like "forwards and backwards"
- Average Velocity often will not match the average speed
- Instantaneous Velocity - speed and direction at an instant.

GETTING FASTER

- Acceleration
- Vector Quantity
- Change in VELOCITY over Time
- m/s/s or m/s²
- Positive sign is not the same as "getting faster"
- Negative sign is not the same as "deceleration"

$x_{f}=x_{i}+v t+1 / 2 a t^{2}$

- Where you are at the end
- Where you started
- Your initial velocity
- The time (duration)
- If your speed changed

$v_{f}=v_{i}+a t$

- No Distance
- Your initial velocity
- Your final velocity
- The time (duration)
- If your speed changed

- can be rearranged

EQUATION 3

VELOCITY BASED ON POSITION

$v_{f}^{2}=v_{i}^{2}+2 a d$

SIMPLE PLUG-IN EXAMPLE

- A car accelerates from rest to a maximum speed of $75 \mathrm{~m} / \mathrm{s}$ in 0.2 minutes.
- What was its acceleration?
- How far did it travel in this time?

SIMPLE PLUG-IN EXAMPLE

- A car accelerates from rest to a maximum speed of $75 \mathrm{~m} / \mathrm{s}$ in 0.2 minutes.
- What was its acceleration?
- How far did it travel in this time?

PICK AN EQUATION

PICK AN EQUATION

KINEMATIC GRAPHS

CONSTANT POSITION

CONSTANT POSITIVE VELOCITY

CONSTANT NEGATIVE VELOCITY

POSITIVE VELOCITY POSITIVE ACCELERATION

POSITIVE VELOCITY NEGATIVE ACCELERATION

NEGATIVE VELOCITY NEGATIVE ACCELERATION

NEGATIVE VELOCITY POSITIVE ACCELERATION

VELOCITY / TIME GRAPH

Slope = Acceleration

VELOCITY / TIME GRAPH

A plot of the position of a car as a function of time is shown in the diagram. Find the velocity of the car during each section of the graph.

A plot of the velocity of a car as a function of time is shown in the diagram. Find the acceleration of the car during each section of the graph.

A plot of the velocity of a car as a function of time is shown in the diagram. Find the displacement of the car during each section of the graph.

SIMPLE MOTION

A car starts with a velocity of $0 \mathrm{~m} / \mathrm{s}$ and accelerates at $7 \mathrm{~m} / \mathrm{s}^{2}$.

what is the velocity after 8 seconds?
what is the velocity as the car passes 25 m
when does the car pass 100m when is the car's velocity $22 \mathrm{~m} / \mathrm{s}$

A car starts with a velocity of $0 \mathrm{~m} / \mathrm{s}$ and accelerates at $7 \mathrm{~m} / \mathrm{s}^{2}$.
what is the velocity after 8 seconds? what is the velocity as the car passes 25 m when does the car pass 100 m when is the car's velocity $22 \mathrm{~m} / \mathrm{s}$

$$
v_{f}=v_{i}+a t
$$

SIMPLE MOTION

A truck starts with a velocity of $45 \mathrm{~m} / \mathrm{s}$ and accelerates at $-6 \mathrm{~m} / \mathrm{s}^{2}$.

 what is the velocity after 4.2 seconds? where is the truck after 4.2 seconds? when is the truck's velocity $0 \mathrm{~m} / \mathrm{s}$ where is the truck when it has a velocity of $0 \mathrm{~m} / \mathrm{s}$

A truck starts with a velocity of $45 \mathrm{~m} / \mathrm{s}$ and accelerates at $-6 \mathrm{~m} / \mathrm{s}^{2}$. what is the velocity after 4.2 seconds? where is the truck after 4.2 seconds? when is the truck's velocity $0 \mathrm{~m} / \mathrm{s}$ where is the truck when it has a velocity of $0 \mathrm{~m} / \mathrm{s}$

$$
v_{f}=v_{i}+a t
$$

COMBINED MOTION

A car starts at rest and accelerates at $+5.6 \mathrm{~m} / \mathrm{s}^{2}$. At the same moment, a truck passes by at a constant velocity of $30 \mathrm{~m} / \mathrm{s}$.

COMBINED MOTION

$$
x_{f}=x_{i}+v t+1 / 2 a t^{2}
$$

A car starts at rest and accelerates at $+5.6 \mathrm{~m} / \mathrm{s}^{2}$. At the same moment, a truck passes by at a constant velocity of $30 \mathrm{~m} / \mathrm{s}$.

PRACTICE PROBLEM

- You have 6.0 hours to travel a distance of 140 km by bicycle.
- How long will it take you to travel the first half at an average speed of $5.8 \mathrm{~m} / \mathrm{s}$?
- In the second half of the ride, you need to increase your average speed to make up for lost time. If you can maintain an average speed of $7 \mathrm{~m} / \mathrm{s}$, will you be able to reach your destination on time?

SAMPLE PROBLEM

- A driver traveling at $30.0 \mathrm{~km} / \mathrm{hr}$ sees the light turn red at the intersection. If his reaction time is 0.600 s , and the car can decelerate at $4.50 \mathrm{~m} / \mathrm{s}^{2}$, find the stopping distance of the car.

