KINEMATICS

File:The Horse in Motion.jpg - Wikimedia Foundation

WHERE ARE YOU?

- Typical CartesianCoordinate System
- usually only the X and Y axis
- meters

File:3D coordinate system.svg - Wikimedia Foundation

Distance

- Scalar Quantity
- Difference between two positions

Displacement

- Vector Quantity
- How to get from one position to another

WHEN YOU MOVE

HOW FAST?

Speed

- Scalar Quantity
- Change in DISTANCE over TIME

Velocity

- Vector Quantity
- Change in DISPLACEMENT over TIME
- units for both (m/s)

File:RansomEliOldsOldsPirate.jpg - Wikimedia Commons

VELOCITY OR SPEED

A person jogs eight complete laps around a quarter mile track in a total time of 12.5 minutes.

- Calculate
 - (a) the average speed and
 - (b) the average velocity, in miles per hour (mph)

VELOCITY DETAILS

- Direction can change the results
- Often positive or negative represents the direction like "forwards and backwards"
- Average Velocity often will not match the average speed
- Instantaneous Velocity speed and direction at an instant.

GETTING FASTER

Acceleration

- Vector Quantity
- Change in VELOCITY over Time
 - = m/s/s or m/s^2
- Positive sign is not the same as "getting faster"
- Negative sign is not the same as "deceleration"

$$x_f = x_i + vt + \frac{1}{2}at^2$$

- Where you are at the end
- Where you started
- Your initial velocity
- The time (duration)
- If your speed changed

$v_f = v_i + at$

- No Distance
- Your initial velocity
- Your final velocity
- The time (duration)
- If your speed changed
- can be rearranged

EQUATION 3

VELOCITY BASED ON POSITION

$$v_f^2 = v_i^2 + 2ad$$

SIMPLE PLUG-IN EXAMPLE

- A car accelerates from rest to a maximum speed of 75 m/s in 0.2 minutes.
 - What was its acceleration?
 - How far did it travel in this time?

SIMPLE PLUG-IN EXAMPLE

- A car accelerates from rest to a maximum speed of 75 m/s in 0.2 minutes.
 - What was its acceleration?
 - How far did it travel in this time?

PICK AN EQUATION

V _f =	75 m/s
t =	12 s
V _i =	0 m/s
a =	?

$$x_f = x_i + vt + \frac{1}{2}at^2$$

$$v_f = v_i + at$$

$$v_f^2 = v_i^2 + 2ad$$

PICK AN EQUATION

 $V_f = 75 \text{ m/s}$

12 s

 $V_i = 0 \text{ m/s}$

 $a = 6.25 \text{ m/s}^2$

now
d =
or x_f =

 $x_f = x_i + vt + \frac{1}{2}at^2$

 $v_f = v_i + at$

 $v_f^2 = v_i^2 + 2ad$

KINEMATIC GRAPHS

CONSTANT POSITION

CONSTANT POSITIVE VELOCITY

CONSTANT NEGATIVE VELOCITY

POSITIVE VELOCITY POSITIVE ACCELERATION

POSITIVE VELOCITY NEGATIVE ACCELERATION

NEGATIVE VELOCITY -NEGATIVE ACCELERATION

NEGATIVE VELOCITY POSITIVE ACCELERATION

VELOCITY / TIME GRAPH

VELOCITY / TIME GRAPH

READING A GRAPH

A plot of the **position** of a car as a function of time is shown in the diagram. Find the **velocity** of the car during each section of the graph.

READING A GRAPH

A plot of the **velocity** of a car as a function of time is shown in the diagram. Find the **acceleration** of the car during each section of the graph.

READING A GRAPH

A plot of the **velocity** of a car as a function of time is shown in the diagram. Find the **displacement** of the car during each section of the graph.

SIMPLE MOTION

A car starts with a velocity of 0 m/s and accelerates at 7 m/s².

what is the velocity after 8 seconds?

what is the velocity as the car passes 25 m

when does the car pass 100m

when is the car's velocity 22 m/s

A car starts with a velocity of 0 m/s and accelerates at 7 m/s².

what is the velocity after 8 seconds? what is the velocity as the car passes 25 m when does the car pass 100m when is the car's velocity 22 m/s

$$v_f = v_i + at$$

A B

 $C \mid D$

SIMPLE MOTION

A truck starts with a velocity of 45 m/s and accelerates at -6 m/s².

what is the velocity after 4.2 seconds?

where is the truck after 4.2 seconds?

when is the truck's velocity 0 m/s

where is the truck when it has a velocity of 0 m/s

A truck starts with a velocity of 45 m/s and accelerates at -6 m/s².

what is the velocity after 4.2 seconds? where is the truck after 4.2 seconds? when is the truck's velocity 0 m/s where is the truck when it has a velocity of 0 m/s

$$v_f = v_i + at$$

A B

 $C \mid D$

COMBINED MOTION

A car starts at rest and accelerates at +5.6 m/s². At the same moment, a truck passes by at a constant velocity of 30 m/s.

COMBINED MOTION

A car starts at rest and accelerates at +5.6 m/s². At the same moment, a truck passes by at a constant velocity of 30 m/s.

$$x_f = x_i + vt + \frac{1}{2}at^2$$

PRACTICE PROBLEM

- You have 6.0 hours to travel a distance of 140 km by bicycle.
 - How long will it take you to travel the first half at an average speed of 5.8 m/s?
 - In the second half of the ride, you need to increase your average speed to make up for lost time. If you can maintain an average speed of 7 m/s, will you be able to reach your destination on time?

SAMPLE PROBLEM

A driver traveling at 30.0 km/hr sees the light turn red at the intersection. If his reaction time is 0.600 s, and the car can decelerate at 4.50 m/s², find the stopping distance of the car.