DOPPLER AND DECIBELS

-third marking period

DEFINITION

Don't try this at home

DOPPLER

• An apparent change in frequency caused by the relative velocity of the source and observer of a wave.

THE DOPPLER EFFECT

Make the sound of a race car speeding by...

COME ON... YOU DON'T LOOK THAT SILLY!

Or, maybe you would

A STATIONARY SOURCE

• The wave fronts of the sound go out in all directions at equal velocities.

A MOVING SOURCE

- In front the compressed wavelength has a higher frequency
- The rarified waves have a lower frequency

SCARY EQUATION

- •f frequency
- •v velocity
- o observed
- •s source

SIMPLE MOVING SOURCE $f_o = f_s \left(\frac{v \pm v_o}{v \pm v_s} \right)$

$$f_o = f_s \left(\frac{v \pm v_o}{v \pm v_s} \right)$$

 A train approaches a student traveling at 40 m/s. The horn on the train has a frequency of 400Hz. What frequency does the student hear?

• A train approaches a student traveling at 40 m/s. The horn on the train has a frequency of 400Hz. What frequency does the student hear?

SIMPLE MOVING OBSERVER

$$f_o = f_s \left(\frac{v \pm v_o}{v \pm v_s} \right)$$

• The train now stands still. Homer S. runs away from it at 60 m/s. The horn on the train has a frequency of 800Hz. What frequency does Homer hear?

• The train now stands still.

Homer S. runs away from it at 60 m/s. The horn on the train has a frequency of 800Hz. What frequency does Homer hear?

659 Hz

DOPPLER SOURCE AND OBSERVER

$$f_o = f_s \left(\frac{v \pm v_o}{v \pm v_s} \right)$$

• The train now faces Homer S. moving at 20 m/s. Homer can run at an amazing 30 m/s. The horn on this train has a frequency of 500 Hz. What frequency does Homer hear?

• The train now faces Homer S. moving at 20 m/s. Homer can run at an amazing 30 m/s. The horn on this train has a frequency of 500 Hz. What frequency does Homer hear?

578 Hz

DECIBEL LEVELS

- dB units of relative intensity
- W/m² units of intensity
- other things where relative numbers are used?

SAMPLE DECIBEL LEVELS

Source	Intensity Level	Intensity
Threshold of Hearing (TOH)	0 dB	1x10 ⁻¹² W/m ²
Rustling Leaves	10 dB	1x10-11 W/m ²
Whisper	20 dB	1x10 ⁻¹⁰ W/m ²
Normal Conversation	60 dB	1x10-6 W/m ²
Busy Street Traffic	70 dB	1x10-5 W/m ²
Vacuum Cleaner	80 dB	1x10-4 W/m ²
Large Orchestra	98 dB	6.3x10 ⁻³ W/m ²
European iPod at Maximum Level	100 dB	1x10-2 W/m ²
Front Rows of Rock Concert	110 dB	1x10 ⁻¹ W/m ²
Threshold of Pain	130 dB	$1 \times 10^1 \text{ W/m}^2$
Military Jet Takeoff	140 dB	1x10 ² W/m ²
Instant Perforation of Eardrum	160 dB	1x10 ⁴ W/m ²

HOW MUCH LOUDER?

- What is "Louder"?
- 30 dB is 10 times above 20 dB
- 40 dB is 10 times above 30 dB
- How much "louder" is 40 dB than 20 dB?
- 100 (not 20)

HOW MUCH LOUDER?

- How much "louder" is a vacuum cleaner than a whisper?
- 8odB to 2odB
- 6odB difference
- 6 Bels
- 10⁶ or a million times more intense sound

HOW MUCH LOUDER?

- How much "louder" is a large orchestra than normal conversation?
- 98 dB to 60 dB
- 38 dB difference
- 3.8 Bels
- 10^{3.8} or 6,310 times more intense

BACKWARDS

- What is 1000 times louder than a 65dB sound?
- Not too hard... 10³
- 3 Bels
- 30 dB
- \bullet 65 + 30dB = 95 dB

BACKWARDS

- What is 30 times softer than a 80 dB sound?
- Use that log button
- $\log_{10}30 = 1.48$
- 1.48 Bels
- 14.8 dB
- 8odB 14.8 = 65.2 dB

ACTUAL INTENSITY

- What is the actual intensity of a 104 dB sound?
- missing number?
- nope- remember the hummingbird!
- $10.4 \text{ Bels} = 10^{10.4} \text{ times}$
- $(1 \times 10^{-12}) \times (1 \times 10^{10.4}) = 0.025 \text{ W/m}^2$

HOMEWORK

- Honors Problem set for sound waves
- Chapter 16 p504+
- dB levels 63, 65, 66, 67, 70, 71, 72, 102
- Doppler 76, 77, 78, 80, 84

