Optics

Mirror Lab

Pick up;
a ruler
a mirror
a protractor
a 200g or 100g mass
1 sheet of paper

- -Fold the paper in half
- -Trace the center line
- -Draw a simple object

Stand up the mirror on the center line

Stand up the mirror on the center line

You may slide the mirror left or right to correctly see the image

Move away the mirror Extend your sight lines through to find their intersection point

Measurements

	D	D	θ	θ
A				
В				
C				

Distances - from the mirror line Angles - From a perpendicular line to the mirror

Di Do В Di Do A_2 A_1

Measure Carefully

Real Images are positive Virtual Images are negative distances

Angles of Reflection

Additional construction

Angles are measured from the normal line at the mirror

Snell's Law Lab

Set Up

you'll need...
(get from the front table)
paper,
glass,
a ruler,
and a protractor

Angle of Incidence

Find the image

Angle of Refraction

Observe
The smaller angle is in the material that is more optically dense

Data/ Calculations

θi	θr	$\sin \theta_i / \sin \theta_r$
30°		
40°		
50°		

Index of Refraction

Snell's Law

Willebrord Snell 1591-1626

Index of Refraction:
a ratio of the speed of light
in a vacuum to the speed of
light in a medium

$$n = c / v$$

vacuum n = 1.0

air n = 1.0003

water n = 1.33

glass n = 1.5

Where the waves bend

$$n_g \sin \theta_g = n_a \sin \theta_a$$

How do you skip a rock?

Internal Reflection

The critical angle of incidence creates a 90° angle of refraction

Olnternal Reflection

Only occurs when light passes from a more dense into a less dense medium.

Occurs when the angle of incidence is greater than the critical angle