TABLE OF INFORMATION DEVELOPED FOR 2012 (see note on cover page)

CONSTANTS AND CONVERSION FACTORS						
Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$					
Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$	1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$					
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$					
Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$					
Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$					
Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$						
1 unified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV/}c^2$					
Planck's constant,	$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$					
	$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$					
Vacuum permittivity,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{N} \cdot \mathrm{m}^2$					
Coulomb's law constant,	$k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$					
Vacuum permeability,	$\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$					
Magnetic constant,	$k' = \mu_0 / 4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$					

LINUT	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
UNIT SYMBOLS	second,	S	newton,	N	volt,	V	degree Celsius,	°C
STMBOLS	ampere,	A	pascal,	Pa	ohm,	Ω	electron-volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

1 atmosphere pressure,

PREFIXES						
Factor	Prefix	Symbol				
10 ⁹	giga	G				
10 ⁶	mega	M				
10 ³	kilo	k				
10^{-2}	centi	c				
$10^{-2} \\ 10^{-3}$	milli	m				
10^{-6}	micro	μ				
10^{-9}	nano	n				
10^{-12}	pico	p				

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0_{\circ}	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$

The following conventions are used in this exam.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.
- *IV. For mechanics and thermodynamics equations, *W* represents the work done <u>on</u> a system.

^{*}Not on the Table of Information for Physics C, since Thermodynamics is not a Physics C topic.

ADVANCED PLACEMENT PHYSICS B EQUATIONS DEVELOPED FOR 2012

NEWTONIAN MECHANICS

 $v = v_0 + at$

a = acceleration

 $x = x_0 + v_0 t + \frac{1}{2}at^2$ f = frequency

F = force

 $v^2 = {v_0}^2 + 2a(x - x_0)$ J = impulse K = kinetic energy

h = height

 $\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$ k = spring constant

 $F_{fric} \le \mu N$

 ℓ = length m = mass

N = normal force

 $a_c = \frac{v^2}{r}$

P = power

 $\tau = rF \sin \theta$

p = momentumr = radius or distance

 $\mathbf{p} = m\mathbf{v}$

T = period

 $\mathbf{J} = \mathbf{F}\Delta t = \Delta \mathbf{p}$

t = timeU = potential energy

v = velocity or speed

 $K = \frac{1}{2}mv^2$

W = work done on

a system x = position

 $\Delta U_g = mgh$

 μ = coefficient of friction

 $W = F\Delta r \cos \theta$

 θ = angle τ = torque

 $P_{avg} = \frac{W}{\Delta t}$

 $P = F v \cos \theta$

 $\mathbf{F}_{s} = -k\mathbf{x}$

 $U_s = \frac{1}{2}kx^2$

 $T_S = 2\pi \sqrt{\frac{m}{l_s}}$

 $T_p = 2\pi \sqrt{\frac{\ell}{\sigma}}$

 $F_G = -\frac{Gm_1m_2}{r^2}$

 $U_G = -\frac{Gm_1m_2}{r}$

ELECTRICITY AND MAGNETISM

 $F = \frac{kq_1q_2}{r^2}$

 $\mathbf{E} = \frac{\mathbf{F}}{a}$

 $U_E = qV = \frac{kq_1q_2}{r}$

 $E_{avg} = -\frac{V}{d}$

 $V = k \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \dots \right)$

 $C = \frac{Q}{V}$

 $C = \frac{\epsilon_0 A}{d}$

 $U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$

 $I_{avg} = \frac{\Delta Q}{\Delta t}$

 $R = \frac{\rho \ell}{A}$

V = IR

P = IV

 $C_n = C_1 + C_2 + C_3 + \dots$

 $\frac{1}{C_2} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$

 $R_s = R_1 + R_2 + R_3 + \dots$

 $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

 $F_R = q v B \sin \theta$

 $F_R = BI\ell \sin\theta$

 $B = \frac{\mu_0}{2\pi} \frac{I}{r}$

 $\phi_m = BA\cos\theta$

 $\boldsymbol{\varepsilon}_{avg} = -\frac{\Delta \phi_m}{\Delta t}$

 $\varepsilon = B\ell\nu$

A = area

B = magnetic field

C = capacitance

d = distance

E = electric field

 $\varepsilon = \text{emf}$

F = force

I = current

q = point charge

R = resistance

= distance

= time

U = potential (stored)

energy

V = electric potential or potential difference

v = velocity or speed

 ρ = resistivity

 θ = angle

 $\phi_m = \text{magnetic flux}$

ADVANCED PLACEMENT PHYSICS B EQUATIONS DEVELOPED FOR 2012

FLUID MECHANICS AND THERMAL PHYSICS

$$\rho = m/V$$

$$P = P_0 + \rho g h$$

$$F_{buov} = \rho V g$$

$$A_1 v_1 = A_2 v_2$$

$$P + \rho gy + \frac{1}{2}\rho v^2 = \text{const.}$$

$$\Delta \ell = \alpha \ell_0 \Delta T$$

$$H = \frac{kA\Delta T}{L}$$

$$P = \frac{F}{A}$$

$$PV = nRT = Nk_RT$$

$$K_{avg} = \frac{3}{2}k_BT$$

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{u}}$$

$$W = -P\Delta V$$

$$\Delta U = Q + W$$

$$e = \left| \frac{W}{Q_H} \right|$$

$$e_c = \frac{T_H - T_C}{T_H}$$

E = hf = pc

 $K_{\text{max}} = hf - \phi$

 $\lambda = \frac{h}{n}$

ATOMIC AND NUCLEAR PHYSICS

A = area

e = efficiency

F = force

h = depth

H = rate of heat transfer

k = thermal conductivity

 K_{avg} = average molecular

kinetic energy

 $\ell = length$

L =thickness

m = mass

M = molar mass

n = number of moles

N = number of molecules

P = pressure

Q = heat transferred to a system

T = temperature

U = internal energy

V = volume

v = velocity or speed

 v_{rms} = root-mean-square

velocity

W =work done on a system

y = height

 α = coefficient of linear

expansion

 μ = mass of molecule

 ρ = density

E = energyf = frequency

m = mass

WAVES AND OPTICS

$$v = f\lambda$$

d = separation

$$n = \frac{c}{v}$$

= frequency or focal length

h = height $n_1 \sin \theta_1 = n_2 \sin \theta_2$

L = distance

$$\sin \theta_C = \frac{n_2}{n_1}$$

M = magnificationm =an integer n = index of

$$\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$$

refraction R = radius of

$$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$$

curvature s = distance

$$h_0 - h_0 - s_0$$

v = speedx = position

 θ = angle

A = area

b = base

h = height

 $\ell = length$

w = width

r = radius

V = volume

C = circumference

S = surface area

$$f = \frac{R}{2}$$
$$d\sin\theta = m\lambda$$

 λ = wavelength

$$x_m \approx \frac{m\lambda L}{d}$$

Rectangle

A = bh

Triangle

 $A = \frac{1}{2}bh$

Circle

$$A=\pi r^2$$

 $C = 2\pi r$

Rectangular Solid

 $V = \ell w h$

Cylinder

$$V=\pi r^2\ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S=4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

 $\Delta E = (\Delta m)c^2$

K = kinetic energy

p = momentum